50 products were found matching your search for Genetic Algorithms in 1 shops:
-
Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications
Vendor: Abebooks.com Price: 28.86 $Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for algorithm development. The book focuses on both theoretical and empirical aspects. The theoretical sections explore the important and characteristic properties of the basic GA as well as main characteristics of the selected algorithmic extensions developed by the authors. In the empirical parts of the text, the authors apply GAs to two combinatorial optimization problems: the traveling salesman and capacitated vehicle routing problems. To highlight the properties of the algorithmic measures in the field of GP, they analyze GP-based nonlinear structure identification applied to time series and classification problems. Written by core members of the HeuristicLab team, this book provides a better understanding of the basic workflow of GAs and GP, encouraging readers to establish new bionic, problem-independent theoretical concepts. By comparing the results of standard GA and GP implementation with several algorithmic extensions, it also shows how to substantially increase achievable solution quality.
-
Genetic Algorithms and Machine Learning for Programmers: Create AI Models and Evolve Solutions (Pragmatic Programmers)
Vendor: Abebooks.com Price: 25.08 $Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to Machine Learning. Now you can create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, cellular automata, and clusters. Learn how to test your ML code and dive into even more advanced topics. If you are a beginner-to-intermediate programmer keen to understand machine learning, this book is for you. Discover machine learning algorithms using a handful of self-contained recipes. Build a repertoire of algorithms, discovering terms and approaches that apply generally. Bake intelligence into your algorithms, guiding them to discover good solutions to problems. In this book, you will: Use heuristics and design fitness functions.Build genetic algorithms.Make nature-inspired swarms with ants, bees and particles.Create Monte Carlo simulations.Investigate cellular automata.Find minima and maxima, using hill climbing and simulated annealing.Try selection methods, including tournament and roulette wheels.Learn about heuristics, fitness functions, metrics, and clusters. Test your code and get inspired to try new problems. Work through scenarios to code your way out of a paper bag; an important skill for any competent programmer. See how the algorithms explore and learn by creating visualizations of each problem. Get inspired to design your own machine learning projects and become familiar with the jargon. What You Need: Code in C++ (>= C++11), Python (2.x or 3.x) and JavaScript (using the HTML5 canvas). Also uses matplotlib and some open source libraries, including SFML, Catch and Cosmic-Ray. These plotting and testing libraries are not required but their use will give you a fuller experience. Armed with just a text editor and compiler/interpreter for your language of choice you can still code along from the general algorithm descriptions.
-
Genetic Algorithms and Genetic Programming : Modern Concepts and Practical Applications
Vendor: Abebooks.com Price: 22.07 $Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for algorithm development. The book focuses on both theoretical and empirical aspects. The theoretical sections explore the important and characteristic properties of the basic GA as well as main characteristics of the selected algorithmic extensions developed by the authors. In the empirical parts of the text, the authors apply GAs to two combinatorial optimization problems: the traveling salesman and capacitated vehicle routing problems. To highlight the properties of the algorithmic measures in the field of GP, they analyze GP-based nonlinear structure identification applied to time series and classification problems. Written by core members of the HeuristicLab team, this book provides a better understanding of the basic workflow of GAs and GP, encouraging readers to establish new bionic, problem-independent theoretical concepts. By comparing the results of standard GA and GP implementation with several algorithmic extensions, it also shows how to substantially increase achievable solution quality.
-
Genetic Algorithms and Machine Learning for Programmers : Create AI Models and Evolve Solutions
Vendor: Abebooks.com Price: 33.87 $Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to Machine Learning. Now you can create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, cellular automata, and clusters. Learn how to test your ML code and dive into even more advanced topics. If you are a beginner-to-intermediate programmer keen to understand machine learning, this book is for you. Discover machine learning algorithms using a handful of self-contained recipes. Build a repertoire of algorithms, discovering terms and approaches that apply generally. Bake intelligence into your algorithms, guiding them to discover good solutions to problems. In this book, you will: Use heuristics and design fitness functions.Build genetic algorithms.Make nature-inspired swarms with ants, bees and particles.Create Monte Carlo simulations.Investigate cellular automata.Find minima and maxima, using hill climbing and simulated annealing.Try selection methods, including tournament and roulette wheels.Learn about heuristics, fitness functions, metrics, and clusters. Test your code and get inspired to try new problems. Work through scenarios to code your way out of a paper bag; an important skill for any competent programmer. See how the algorithms explore and learn by creating visualizations of each problem. Get inspired to design your own machine learning projects and become familiar with the jargon. What You Need: Code in C++ (>= C++11), Python (2.x or 3.x) and JavaScript (using the HTML5 canvas). Also uses matplotlib and some open source libraries, including SFML, Catch and Cosmic-Ray. These plotting and testing libraries are not required but their use will give you a fuller experience. Armed with just a text editor and compiler/interpreter for your language of choice you can still code along from the general algorithm descriptions.
-
Genetic Algorithms in Search, Optimization and Machine Learning
Vendor: Abebooks.com Price: 33.73 $This book describes the theory, operation, and application of genetic algorithms-search algorithms based on the mechanics of natural selection and genetics.
-
Genetic Algorithms + Data Structures = Evolution Programs
Vendor: Abebooks.com Price: 76.47 $Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques is still growing, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science.The book is self-contained and the only prerequisite is basic undergraduate mathematics. This third edition has been substantially revised and extended by three new chapters and by additional appendices containing working material to cover recent developments and a change in the perception of evolutionary computation.
-
Genetic Algorithms + Data Structures = Evolution Programs
Vendor: Abebooks.com Price: 106.18 $In a unified and comprehensive manner, this book collects the results of evolutionary programming techniques available only in widely scattered research papers. The book includes a discussion of optimization problems in the areas of optimal control, operations research and engineering. New features are references to recent developments and a sample genetic code in C.
-
Foundations of Genetic Algorithms 1991 (FOGA 1) (Volume 1) (Foundations of Genetic Algorithms, Volume 1)
Vendor: Abebooks.com Price: 55.72 $Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems. This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; conditions for implicit parallelism; and analysis of multi-point crossover are also elaborated. This text likewise covers the genetic algorithms for real parameter optimization and isomorphisms of genetic algorithms. This publication is a good reference for students and researchers interested in genetic algorithms.
-
Hands-On Genetic Algorithms with Python: Apply genetic algorithms to solve real-world AI and machine learning problems
Vendor: Abebooks.com Price: 47.83 $Book is in Used-Good condition. Pages and cover are clean and intact. Used items may not include supplementary materials such as CDs or access codes. May show signs of minor shelf wear and contain limited notes and highlighting. 1.5
-
Hands-On Genetic Algorithms with Python: Applying genetic algorithms to solve real-world deep learning and artificial intelligence problems
Vendor: Abebooks.com Price: 52.92 $Book is in NEW condition. 1.23
-
Practical Genetic Algorithms
Vendor: Abebooks.com Price: 55.96 $A tutorial on genetic algorithms with an emphasis on practical applications The rapidly expanding field of genetic algorithms has given rise to many new applications in a variety of disciplines. However, most of the existing books on the subject concentrate on theory. Practical Genetic Algorithms is the first introductory-level book to emphasize practical applications through the use of example problems. In an accessible style, the authors explain why the genetic algorithm is superior in many real-world applications, cover continuous parameter genetic algorithms, and provide in-depth trade-off analysis of genetic algorithm parameter selection. Written for the end user in engineering, science, and computer programming, as well as upper-level undergraduate and graduate students, Practical Genetic Algorithms: * Provides numerous practical example problems * Contains over 80 illustrations * Features many figures and tables * Includes three appendices: a glossary of terms, a list of genetic algorithm routines in pseudocode, and a list of symbols used in the book.
-
Foundations of Genetic Algorithms 1991 (Foga 1): Volume 1
Vendor: Abebooks.com Price: 30.42 $Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems. This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; conditions for implicit parallelism; and analysis of multi-point crossover are also elaborated. This text likewise covers the genetic algorithms for real parameter optimization and isomorphisms of genetic algorithms. This publication is a good reference for students and researchers interested in genetic algorithms.
-
An Introduction to Genetic Algorithms (Complex Adaptive Systems)
Vendor: Abebooks.com Price: 47.28 $Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics―particularly in machine learning, scientific modeling, and artificial life―and reviews a broad span of research, including the work of Mitchell and her colleagues.The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines.An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
-
Hands-On Genetic Algorithms with Python: Applying genetic algorithms to solve real-world deep learning and artificial intelligence problems
Vendor: Abebooks.com Price: 52.45 $Acceptable/Fair condition. Book is worn, but the pages are complete, and the text is legible. Has wear to binding and pages, may be ex-library. 1.23
-
An Introduction to Genetic Algorithms (Complex Adaptive Systems)
Vendor: Abebooks.com Price: 101.51 $Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics— particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
-
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration (The Morgan Kaufmann Series in Data Management Systems)
Vendor: Abebooks.com Price: 91.76 $Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration is a handbook for analysts, engineers, and managers involved in developing data mining models in business and government. As you’ll discover, fuzzy systems are extraordinarily valuable tools for representing and manipulating all kinds of data, and genetic algorithms and evolutionary programming techniques drawn from biology provide the most effective means for designing and tuning these systems. You don’t need a background in fuzzy modeling or genetic algorithms to benefit, for this book provides it, along with detailed instruction in methods that you can immediately put to work in your own projects. The author provides many diverse examples and also an extended example in which evolutionary strategies are used to create a complex scheduling system.Written to provide analysts, engineers, and managers with the background and specific instruction needed to develop and implement more effective data mining systemsHelps you to understand the trade-offs implicit in various models and model architecturesProvides extensive coverage of fuzzy SQL querying, fuzzy clustering, and fuzzy rule inductionLays out a roadmap for exploring data, selecting model system measures, organizing adaptive feedback loops, selecting a model configuration, implementing a working model, and validating the final modelIn an extended example, applies evolutionary programming techniques to solve a complicated scheduling problemPresents examples in C, C++, Java, and easy-to-understand pseudo-codeExtensive online component, including sample code and a complete data mining workbench
-
Dna Computing Based Genetic Algorithm Applications in Industrial Process Modeling and Control (pb 2020)
Vendor: Abebooks.com Price: 128.73 $New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service.
-
Evolutionary Deep Learning: Genetic algorithms and neural networks
Vendor: Abebooks.com Price: 51.45 $Like New condition. Great condition, but not exactly fully crisp. The book may have been opened and read, but there are no defects to the book, jacket or pages. 1.4
-
Evolutionary Algorithms in Theory and Practice : Evolution Strategies, Evolutionary Programming, Genetic Algorithms
Vendor: Abebooks.com Price: 275.31 $This book presents a unified view of evolutionary algorithms: the exciting new probabilistic search tools inspired by biological models that have immense potential as practical problem-solvers in a wide variety of settings, academic, commercial, and industrial. In this work, the author compares the three most prominent representatives of evolutionary algorithms: genetic algorithms, evolution strategies, and evolutionary programming. The algorithms are presented within a unified framework, thereby clarifying the similarities and differences of these methods. The author also presents new results regarding the role of mutation and selection in genetic algorithms, showing how mutation seems to be much more important for the performance of genetic algorithms than usually assumed. The interaction of selection and mutation, and the impact of the binary code are further topics of interest. Some of the theoretical results are also confirmed by performing an experiment in meta-evolution on a parallel computer. The meta-algorithm used in this experiment combines components from evolution strategies and genetic algorithms to yield a hybrid capable of handling mixed integer optimization problems. As a detailed description of the algorithms, with practical guidelines for usage and implementation, this work will interest a wide range of researchers in computer science and engineering disciplines, as well as graduate students in these fields.
-
Robust Range Image Registration Using Genetic Algorithms and the Surface Interpenetration Measure (machine Perception and Artificial Intelligence)
Vendor: Abebooks.com Price: 58.26 $This book addresses the range image registration problem for automatic 3D model construction. The focus is on obtaining highly precise alignments between different view pairs of the same object to avoid 3D model distortions; in contrast to most prior work, the view pairs may exhibit relatively little overlap and need not be prealigned. To this end, a novel effective evaluation metric for registration, the Surface Interpenetration Measure (SIM) is defined. This measure quantifies the interleaving of two surfaces as their alignment is refined, putting the qualitative evaluation of "splotchiness," often used in reference to renderings of the aligned surfaces, onto a solid mathematical footing. The SIM is shown to be superior to mean squared error (i.e. more sensitive to fine scale changes) in controlling the final stages of the alignment process.The authors go on to combine the SIM with Genetic Algorithms (GAs) to develop a robust approach for range image registration. The results confirm that this technique achieves precise surface registration with no need for prealignment, as opposed to methods based on the Iterative Closest Point (ICP) algorithm, the most popular to date. Thorough experimental results including an extensive comparative study are presented and enhanced GA-based approaches to improve the registration still further are proposed. The authors also develop a global multiview registration technique using the GA-based approach. The results show considerable promise in terms of accuracy for 3D modeling.
50 results in 0.254 seconds
Related search terms
© Copyright 2025 shopping.eu