9 products were found matching your search for Integralrechnung in 1 shops:
-
Differential- und Integralrechnung, II (Heidelberger Taschenba1/4cher)
Vendor: Abebooks.com Price: 34.16 $differenzierbar, wenn es eine in Xo stetige Abbildung x -+,1. von U in den dual en Raum Hom (JRn, JR) gibt, so daB /(x)=f(xo)+,1x(x-x ) o gilt. Diese Definition ilbertragt sich auf den Fall, wo Xo Punkt eines separierten topologischen Vektorraumes E ist und die Werte von f in einem ebensolchen Vektorraum F liegen. Man hat dazu den Raum Hom (E, F) der stetigen linearen Ab bildungen von E in F mit einer Pseudotopologie zu versehen 1: Man betrachtet z. B. genau die Filter auf Hom (E, F) als gegen 0 kon vergent, die folgende Eigenschaft haben: Fur jeden Filter auf Emit m. -+ 0 gilt ( ) -+ 0 in F. Dabei ist m der Filter der Nullumge bungen in JR, m. wird von den N A mit N E m und A E erzeugt, ( ) von den L (A) = u A. (A) mit L E und A E . Man kann nun die Differenzierbarkeit au wie oben definieren, nur ist unter x -+,1x jetzt eine in Xo stetige Abbildung von U in Hom (E, F) zu verstehen. Man zeigt: Da die naturliche Abbildung Hom(E, F)XE-+F stetig ist, ist,1xo eindeutig bestimmt und kann als Ableitung von f im Punkt Xo bezeichnet werden. Auch jetzt folgt aus der Differenzierbarkeit die Stetigkeit; es gilt die Kettenregel."
-
Differential- und Integralrechnung, III. Integrationstheorie. (Heidelberger Taschenba1/4cher)
Vendor: Abebooks.com Price: 24.91 $wir begtigen uns mit dem Nachweis, daB die meBbaren Mengen eine a-Algebra bilden, auf welcher der Inhalt als a-additives Funktional operiert, und daB jede offene Menge meBbar ist. 2. Das zweite Kapitel bringt den Begriff der alternierenden Differentialform. Die multilineare Algebra wird in dem Umfang, in dem wir sie brauchen, mitbehandelt. Differentialformen sind die natlirlichen Integranden der in Kap. III untersuchten Flacheninte grale. Hier werden auch die wichtige Transformationsformel fUr die Integration in n Veranderlichen und der Stokessche Satz bewiesen. Die Integration erfolgt tiber (kompakte) "gepflasterte" Flachen; das Integral erweist sich dabei als unabhangig von der Auswahl der Pflasterung. Da sich jede glatte Flache in natlirli cher Weise pflastern laBt, ist eine Integration tiber stets mo glich. Ahnlich dtirfte jede kompakte semianalytische Menge (mit Singularitaten!) Pflasterungen besitzen. Die letzten beiden Paragraphen des dritten Kapitels sind dann den Kurvenintegralen tiber beliebige rektifizierbare Wege gewid met. Urn das Integral in dieser Allgemeinheit zu erhalten, ist eine Untersuchung der absolut stetigen Funktionen notwendig. Damit werden auch die bereits in Band I angegebenen Satze tiber die Variablentransformation im Lebesgue-Integral und tiber den Zu sammenhang zwischen Differentiation und Integration bewiesen."
-
Differential- Und Integralrechnung III : Integrationstheorie Kurven Und Flachenintegrale Vektoranalysis -Language: german
Vendor: Abebooks.com Price: 55.33 $wir begtigen uns mit dem Nachweis, daB die meBbaren Mengen eine a-Algebra bilden, auf welcher der Inhalt als a-additives Funktional operiert, und daB jede offene Menge meBbar ist. 2. Das zweite Kapitel bringt den Begriff der alternierenden Differentialform. Die multilineare Algebra wird in dem Umfang, in dem wir sie brauchen, mitbehandelt. Differentialformen sind die natlirlichen Integranden der in Kap. III untersuchten Flacheninte grale. Hier werden auch die wichtige Transformationsformel fUr die Integration in n Veranderlichen und der Stokessche Satz bewiesen. Die Integration erfolgt tiber (kompakte) "gepflasterte" Flachen; das Integral erweist sich dabei als unabhangig von der Auswahl der Pflasterung. Da sich jede glatte Flache in natlirli cher Weise pflastern laBt, ist eine Integration tiber stets mo glich. Ahnlich dtirfte jede kompakte semianalytische Menge (mit Singularitaten!) Pflasterungen besitzen. Die letzten beiden Paragraphen des dritten Kapitels sind dann den Kurvenintegralen tiber beliebige rektifizierbare Wege gewid met. Urn das Integral in dieser Allgemeinheit zu erhalten, ist eine Untersuchung der absolut stetigen Funktionen notwendig. Damit werden auch die bereits in Band I angegebenen Satze tiber die Variablentransformation im Lebesgue-Integral und tiber den Zu sammenhang zwischen Differentiation und Integration bewiesen."
-
Differential- Und Integralrechnung II : Differentialrechnung in Mehreren Veranderlichen Differentialgleichungen -Language: german
Vendor: Abebooks.com Price: 55.33 $differenzierbar, wenn es eine in Xo stetige Abbildung x -+,1. von U in den dual en Raum Hom (JRn, JR) gibt, so daB /(x)=f(xo)+,1x(x-x ) o gilt. Diese Definition ilbertragt sich auf den Fall, wo Xo Punkt eines separierten topologischen Vektorraumes E ist und die Werte von f in einem ebensolchen Vektorraum F liegen. Man hat dazu den Raum Hom (E, F) der stetigen linearen Ab bildungen von E in F mit einer Pseudotopologie zu versehen 1: Man betrachtet z. B. genau die Filter auf Hom (E, F) als gegen 0 kon vergent, die folgende Eigenschaft haben: Fur jeden Filter auf Emit m. -+ 0 gilt ( ) -+ 0 in F. Dabei ist m der Filter der Nullumge bungen in JR, m. wird von den N A mit N E m und A E erzeugt, ( ) von den L (A) = u A. (A) mit L E und A E . Man kann nun die Differenzierbarkeit au wie oben definieren, nur ist unter x -+,1x jetzt eine in Xo stetige Abbildung von U in Hom (E, F) zu verstehen. Man zeigt: Da die naturliche Abbildung Hom(E, F)XE-+F stetig ist, ist,1xo eindeutig bestimmt und kann als Ableitung von f im Punkt Xo bezeichnet werden. Auch jetzt folgt aus der Differenzierbarkeit die Stetigkeit; es gilt die Kettenregel."
-
Differential- und Integralrechnung I: Funktionen einer reellen Veränderlichen (Heidelberger Taschenbücher, 26) (German Edition)
Vendor: Abebooks.com Price: 53.99 $lesungen gemaB solI auch das Buch einem Leser, der keine Vorkenntnisse in hoherer Mathematik besitzt, die Gelegenheit geben, einen moglichst strengen und systematischen Aufbau der Theorie der reellen Funktionen kennenzulernen. Dementsprechend sind aIle Beweise bis in die Einzel- heiten hinein ausgeflihrt, und in den ersten Paragraphen werden wich- tige Beweismethoden eigens erlautert. Dabei nehmen wir jedoch den logischen und mengentheoretischen Gesetzen gegenliber einen naiven," d. h. nicht-axiomatischen, Standpunkt ein. Das gilt besonders flir das Prinzip der vollstandigen Induktion und damit auch flir den Begriff der natlirlichen Zahl und der Folge. Wir geben eine Obersicht iiber den Inhalt des Buches. Grundlegend ist der Begriff der reellen Zahl. 1m ersten Kapitel werden die Axiome des rellen Zahlkorpers mit ihren einfachsten Folge- rungen ausflihrlich besprochen; die unendlich fernen Punkte + 00 und - 00 werden axiomatisch miteingeflihrt. Die nachsten beiden Kapitel sind dem Umgebungsbegriff und dem darauf fuBenden Grenzwertbegriff flir Folgen und Reihen gewidmet. Da wir flir die Definition der Konvergenz die natlirliche (uniforme) Topologie der Zahlengeraden zugrundelegen, bleibt die Konvergenz gegen ± 00 ausgeschlossen. - Die Begriffe limes superior" und limes inferior" sind so gefaBt, daB sie mit der Definition der halbstetigen Funktionen harnionieren. Reelle Funktionen werden im vierten Kapitel behandelt. Vor den stetigen werden halbstetige Funktionen definiert. Dieser Funktionstyp ist in Kapitel VII flir die Definition von Umgebungen im Funktions- raum wichtig und damit zur Einflihrung des Lebesgueschen Integrals, das in diesem Buch -das unbefriedigende Riemannsche Integral ablOst.
-
Analysis 1: Differential- und Integralrechnung einer Veränderlichen (Grundkurs Mathematik) (German Edition)
Vendor: Abebooks.com Price: 43.02 $Dieses seit vier Jahrzehnten bewährte Standardwerk ist gedacht als Begleittext zur Analysis-Vorlesung des ersten Semesters für Mathematiker, Physiker und Informatiker. Bei der Darstellung wurde besonderer Wert darauf gelegt, in systematischer Weise, aber ohne zu große Abstraktionen zu den wesentlichen Inhalten vorzudringen und sie mit vielen konkreten Beispielen zu illustrieren. An verschiedenen Stellen wurden Bezüge zur Informatik hergestellt. Einige numerische Beispiele wurden durch Programm-Codes ergänzt, so dass die Rechnungen direkt am Computer nachvollzogen werden können. Die vorliegende 12. Auflage wurde in mehreren Details verbessert und enthält einige zusätzliche Aufgaben und Beispiele.
-
Analysis 1: Differential- und Integralrechnung einer Veränderlichen (Grundkurs Mathematik) (German Edition)
Vendor: Abebooks.com Price: 23.05 $Dieses seit vier Jahrzehnten bewährte Standardwerk ist gedacht als Begleittext zur Analysis-Vorlesung des ersten Semesters für Mathematiker, Physiker und Informatiker. Bei der Darstellung wurde besonderer Wert darauf gelegt, in systematischer Weise, aber ohne zu große Abstraktionen zu den wesentlichen Inhalten vorzudringen und sie mit vielen konkreten Beispielen zu illustrieren. An verschiedenen Stellen wurden Bezüge zur Informatik hergestellt. Einige numerische Beispiele wurden durch Programm-Codes ergänzt, so dass die Rechnungen direkt am Computer nachvollzogen werden können. Die vorliegende 12. Auflage wurde in mehreren Details verbessert und enthält einige zusätzliche Aufgaben und Beispiele.
-
Analysis 2 -Language: german
Vendor: Abebooks.com Price: 45.82 $Hauptthema dieses zweiten Bandes ist die Differential- und Integralrechnung für Funktionen von mehreren Veränderlichen. Dabei wird auch das Lebesguesche Integral im Rn behandelt. Dem erfolgreichen Konzept von "Analysis 1" folgend, wird viel Wert auf historische Zusammenhänge, Ausblicke und die Entwicklung der Analysis gelegt. Zu den Besonderheiten, die über den kanonischen Stoff des zweiten Semesters hinausgehen, gehören das Morsesche und das Sardsche Lemma, die C?-Approximation von Funktionen (Mollifiers) und die Theorie der absolutstetigen Funktionen. Zahlreiche Beispiele, Übungsaufgaben und Anwendungen, z.B. aus der Physik und Astronomie, runden dieses Lehrbuch ab. Der Abschnitt "Lösungen und Lösungshinweise" wurde für die Neuauflage wesentlich erweitert, so daß die überwiegende Zahl der Aufgaben im Buch nun besprochen oder vollständig gelöst wird.
-
Analysis 1 (Springer-Lehrbuch)
Vendor: Abebooks.com Price: 20.15 $Mit diesem Lehrbuch wird ein ausgewogener Weg zwischen klassischem Inhalt und moderner Darstellung der Analysis der ersten Studiensemester beschritten. Die anschauliche, gut fundierte Einführung in die Differential- und Integralrechnung haben das Buch zu einem Klassiker unter den einführenden Analysislehrbüchern werden lassen. Die vorliegende vierte Auflage wurde vollständig überarbeitet. Zu den wichtigsten Änderungen gehören: Zentrale Behandlung des Stetigkeitsbegriffs im Kapitel über "Funktionen & Folgen", Begründung des Riemannintegrals durch Riemannsche Summen; Einführung von Differentialgleichungen. Viele neue Beispiele und Übungsaufgaben runden dieses Buch ab.
9 results in 0.194 seconds
Related search terms
© Copyright 2024 shopping.eu